Molecular structure of the octamer d(G-G-C-C-G-G-C-C): modified A-DNA.

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular structure of the octamer d(G-G-C-C-G-G-C-C): modified A-DNA.

The deoxynucleotide fragment d(GpGpCpCpGpGpCpC) was synthesized and crystallized, and its three-dimensional structure was determined by x-ray diffraction techniques to a resolution of 2.25 A. The molecule forms a right-handed double helix in which the two base pairs at either end of the molecule are in the conventional A-DNA conformation, while the central four base pairs have a modified form i...

متن کامل

Vaccination .B. C. G

This article was presented by the author at the Vaccination Seminar of May 26, 1972, National University Medical School.

متن کامل

The structure of B-helical C-G-A-T-C-G-A-T-C-G and comparison with C-C-A-A-C-G-T-T-G-G. The effect of base pair reversals.

The crystal structure of the DNA decamer C-G-A-T-C-G-A-T-C-G has been solved to a resolution of 1.5 A, with a final R-factor of 16.1% for 5,107 two-sigma reflections. Crystals are orthorhombic space group P2(1)2(1)2(1), with cell dimensions a = 38.93 A, b = 39.63 A, c = 33.30 A, and 10 base pairs/asymmetric unit. The final structure contains 404 DNA atoms, 142 water molecules treated as oxygen ...

متن کامل

(C; C\')-Controlled g-Fusion Frames in Hilbert Spaces

Controlled frames in Hilbert spaces have been recently introduced by P. Balazs and etc. for improving the numerical efficiency of interactive algorithms for inverting the frame operator. In this paper we develop a theory based on g-fusion frames on Hilbert spaces, which provides exactly the frameworks not only to model new frames on Hilbert spaces but also for deriving robust operators. In part...

متن کامل

G C

We are concerned with the compatible gauge reformulation for H(div) equations and the design of fast solvers of the resulting linear algebraic systems as in [5]. We propose an algebraic reformulation of the discrete H(div) equations along with an algebraic multigrid (AMG) technique for the reformulated problem. The reformulation uses discrete Hodge decompositions on co-chains to replace the dis...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1982

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.79.13.3968